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Abstract. Striking the correct balance between global exploration of search spaces and local
exploitation of promising basins of attraction is one of the principal concerns in the design
of global optimization algorithms. This is true in the case of techniques based on global
response surface approximation models as well. After constructing such a model using some
initial database of designs it is far from obvious how to select further points to examine so
that the appropriate mix of exploration and exploitation is achieved. In this paper we pro-
pose a selection criterion based on the expected improvement measure, which allows rela-
tively precise control of the scope of the search. We investigate its behavior through a set of
artificial test functions and two structural optimization problems. We also look at another
aspect of setting up search heuristics of this type: the choice of the size of the database that
the initial approximation is built upon.
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1. Introduction

The rapid advances seen in recent times in computing technology have
brought about changes in many facets of computational engineering. One
aspect that has not changed, however, is the relative computational expense
of simulations used in design optimization. The evaluation of physics-based
models can still take tens of hours and, as the demand for ever-higher fidel-
ity (and thus more complex) models closely shadows increases in processing
power, this is unlikely to change in the near future.

One of the more popular approaches for the economical use of such
expensive simulations is the broadening class of optimization algorithms
based on cheap global approximation models (often called surrogate models
or spatial prediction models) of the high-fidelity computational simulation.
These models involve running the physics-based analysis code (treating it,
essentially, as a black-box function) for a number of designs and using this
training data to build a surrogate model, which is cheap to evaluate. These
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models have their roots in a variety of fields: response surface approxi-
mation methodology (low-order polynomials), nature-inspired computing
(artificial neural networks), spatial statistics, stochastic process theory,
mathematical geology (kriging, Radial Basis Function models), etc.

A detailed taxonomy of optimization methods based on global approxi-
mation models is provided by Jones (2001). In this study we limit ourselves
to two-stage procedures, which are based on the following general template.
First, an initial set of sample points is generated using some Design of
Experiments (DoE) technique. Generally, at this stage the location of the
points is only required to satisfy some space-filling criterion. The situation
may be slightly different if the design space is constraint-bound and the
computational cost of the constraint is relatively low: if we expect the best
designs to lie on the boundaries, we can place some of the initial points
on the boundary. Also, the constraints may be used to trim the bounding
box. Nevertheless, in most cases uniform distribution of the points is the
best we can do, as we have not computed any objective function values yet
and thus have no knowledge of areas of interest on the landscape under
scrutiny. We then run the simulation for these designs and build the initial
surrogate model.

The second stage of the method is the selection of the so-called infill
sample, i.e., the next point(s) to be evaluated, followed by the recon-
struction of the approximation model (this process is then repeated until
we run out of time). When selecting the infill sample we can base our
choice on information gleaned from the current approximation. The sim-
plest infill selection criterion is the predictor itself: we can optimize the
current approximation (of course, this is a cheap operation, as no further
calls to the physics-based analysis are required) and sample at the opti-
mum found. Another possible strategy is to find the point where the esti-
mated error of the predictor is at a maximum (such a measure is available,
for example, in polynomial, kriging and Gaussian Radial Basis Function
models), i.e. where we are least certain about the predicted objective value.
Thus, the next re-fit of the surrogate model will yield a prediction with a
more uniform global accuracy. As we shall see later, both of these criteria
have their drawbacks and we investigate some more sophisticated alterna-
tives.

For now, let us return to the first stage of our generic optimizer: the
construction of the initial approximation. There are a wide variety of
DoE methods available to the designer wishing to select the initial sam-
ple points. Factorial, fractional factorial, central composite (Montgomery,
2000), latin hypercube (Mackay et al., 1979) and LPτ (Sobol, 1979) designs
are amongst the most widely used. The goal of these techniques is to fill
the design space in some sense, because, as we mentioned earlier, it is com-
monly recognized that in the absence of any a priori knowledge of the
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problem under consideration (such as the location of a constraint bound-
ary), uniformity of the design points throughout the domain is favorable.
Our main concern in this study is the optimum size of this initial sample.
Although some researchers use “rules of thumb”, such as the number of
points should be roughly ten times the number of dimensions (Jones et al.,
1998), to date there is no clear understanding of how this figure should
be chosen and what influence the choice has on the performance of the
optimizer.

Intuitively, one might keep the size of the initial sample to a minimum
and target the majority of the available shots more intelligently, i.e., using
some infill sample selection criterion based on an approximation of the
objective function. However, caution needs to be exercised here. The main
question is: could the approximation based on a very small sample be so
inaccurate – and thus misleading – that we would be better off starting
with a set of points whose selection is simply based on a space-filling cri-
terion? Conversely, if we start with a large number of data points, are we
not wasting precious evaluations by selecting them without regard to the
previously found objective values? Also, how (if at all) does the optimum
size of the initial sample depend on the choice of the type of infill crite-
rion for further points? While a definitive answer may be some way away,
this paper presents an empirical investigation of the issue, sufficiently con-
clusive to offer some set-up guidance to users of such algorithms.

The second object of our study, which we examine in conjunction with
the problem of the initial sample size, concerns stage two of the approxi-
mation-based search. We look at how the scope of the infill criterion can
be controlled, i.e., how it can be biased towards local exploitation of prom-
ising basins of attraction or towards global exploration of the search space
and, most importantly, what effect the bias has on the performance of the
optimizer.

As we mentioned earlier, it is possible to select the next sample point
simply by optimizing the predictor. This may work well on simple, uni-
modal functions, which can be approximated well even with a relatively
small number of points, but it may easily get trapped in a local optimum
if the landscape is multimodal. The other extreme is to always choose the
point where the uncertainty associated with the predictor is highest. This
procedure has the merit of guaranteeing global convergence (under certain
rather mild assumptions), but it may require a very large number of evalu-
ations to achieve this even on simple problems. Watson and Barnes (1995)
suggest sampling in threshold-bounded extremes, i.e., to find the next point
by maximizing the probability of the infill sample objective value exceeding
some threshold. The drawback here, as Sasena et al. (2002) point out, is
similar to that of searching the predictor: the optimization will become
extremely localized and thus prone to premature stall.
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In global optimizers it is important to achieve a balance between explo-
ration and exploitation – approximation-based techniques are no exception.
An infill selection criterion designed to search both the prediction and its
uncertainty is the maximization of the expectation of the amount by which
the next potential evaluated point will improve on the best objective value
known so far. This figure of merit is often termed expected improvement.
The concept goes back at least to Mockus et al. (1978) and has recently
been used for optimization by several researchers, most notably by Jones
et al. (1998) in their EGO algorithm. By always placing the next sample
point at the maximum of the expected improvement landscape associated
with the approximation of the current model, the search is likely to visit
promising basins of attraction, while occasionally sampling in other, less
well mapped areas of the search space as well. Another advantage of the
expected improvement measure is that optimization strategies based on it,
using the template described earlier, can be implemented on parallel archi-
tectures. In this case, the top Np local maxima of the expected improvement
are highlighted as the next infill sample (the expected improvement surface
is almost invariably multimodal), where Np is the number of available pro-
cessors. It has been shown that the parallel speedup is often close to linear
when using this approach (Sóbester et al., 2004)).

Thus, with expected improvement we have a means of fusing exploration
and exploitation into a single criterion. However, if the problem in hand
is likely to yield a simple, unimodal surface, searching the predictor will
probably work better. Conversely, if the objective landscape is extremely
multimodal, biasing the search towards sampling in thus far unexplored
areas could lead to faster convergence than the expected improvement cri-
terion. In other words, expected improvement still does not allow us to
control the balance between local and global exploration. Furthermore, the
scope of the expected improvement criterion may not be broad enough if
the objective is poorly estimated by the approximation (and consequently
the accuracy of the expectation of the improvement is also questionable).
To alleviate these shortcomings, Schonlau (1997) proposes the generalized
expected improvement criterion. This is controlled by a parameter g =
0,1,2, . . . He shows that for g = 0 the criterion yields the probability of
improvement (this value, for a particular point, is the probability of the
current best objective value being improved on if we sample in that point).
For higher values of g the emphasis shifts more and more towards global
search. Sasena et al. (2002) suggest a heuristic reminiscent of Simulated
Annealing, which is based on generalized expected improvement. They start
with a high value of g, which is then decreased as the search progresses,
based on a discrete, approximately exponential cooling schedule. The gen-
eralized expected improvement measure thus allows the user to control the
scope of the search to some extent, but since it has no upper bound, its
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values are extremely difficult to select for a particular application (it is hard
to tell how much impact a change from, say, g=5 to, say, g=10 will make
on the global bias of the search). Furthermore, it does not cover the search
scope range between extremely localized exploitation (g=0, i.e., probability
of improvement) and expected improvement (g=1).

In this paper we propose a weighted expected improvement criterion,
which is designed to allow a more flexible and more “user friendly” means
of biasing the search towards exploration or exploitation. The next sec-
tion describes this measure in more detail, taking the standard expected
improvement criterion as a natural starting point. This is followed by a
demonstrative example (Section 3) that highlights the most important fea-
tures of the criterion. Section 4 deals with the question of how to perform
weighted expected improvement updates on constrained landscapes. We
then adopt an empirical approach to examine the effect of the weighting
(the control parameter of the criterion) on the performance of an approx-
imation-based optimizer, in conjunction with the other major parameter
that we propose to investigate: the size of the initial sample. The first
part of Section 5 presents results obtained on a set of artificial test func-
tions, while in the second and third parts we use two structural optimiza-
tion problems to verify some of the conclusions gleaned from these results.
We then discuss a variable-bias implementation of the weighted expected
improvement criterion and we compare its performance to that of some
well-known techniques. In Section 7 we summarize our conclusions and
suggests pointers to further work.

2. Radial basis function interpolators and weighted expected improvement

Before delving into the details of our proposed infill selection criterion, we
briefly review the background of stage one of the optimizer, i.e., the con-
struction of the global approximation of the objective function. This surro-
gate model can be built as soon as we have chosen a suitable experimental
design and evaluated the high fidelity model at this set of inputs. In a typi-
cal approximation model the relationship between observations (responses)
and independent variables on a k-dimensional domain D is expressed as

y=f (x), (1)

where y is the observed response, x is a vector of k independent variables

x = (x1, x2, . . . , xk) (2)

and f (x) is some unknown function. An approximation to this response

ŷ= f̂ (x) (3)
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is sought. As we hinted earlier, it is also important from the optimization
point of view to be able to obtain an error estimate for this approximation.
To this end, here we employ a stochastic process-based modeling frame-
work. This may seem counterintuitive, as physics-based numerical computer
experiments, the pillars of the majority of computer-aided design optimi-
zation procedures, are usually deterministic. That is, unlike physical exper-
iments, repeated runs of such simulations on the same design return the
same figure of merit (objective value) each time. Nevertheless, it can be
argued that stochastic process approximation techniques can be employed
to model this type of output. The rationale is that, although the physics-
based simulation process itself is deterministic, its output can be viewed as
a realisation of a stochastic process.1

There are several approaches for building such models – here we choose
to work with Radial Basis Functions (RBF) on the grounds that their
training is inexpensive, yet, as we will see, they are sufficiently accurate for
optimization purposes. RBF models attempt to express a complicated land-
scape as the weighted sum of several simple functions – in the following we
describe the model building procedure in more detail.

Assuming that we can afford to run the analysis code N times, we sam-
ple the objective for N designs (denoted by [x(1),x(2), . . . ,x(N)]), at which
we obtain the responses y = [y(1), y(2), . . . , y(N)]. The RBF can be used to
make a prediction ŷ = f̂ (x) at any point x in the design space and the
first step towards this is to choose the basis function centres. To obtain
an interpolating model we need at least N bases. The common choice here
is the set of N points where we know the objective function values (i.e.,
[x(1),x(2), . . . ,x(N)]). The basis functions take the form φ(‖x −x(i)‖), where
φ(·) is some (usually) non-linear function, the ith such function depend-
ing on the Euclidean distance between x and x(i). The predictor is a linear
combination of these basis functions, that is

ŷ= f̂ (x)=
N∑

i=1

wiφ(‖x −x(i)‖). (4)

The coefficients wi have to be found such that the predictor interpolates the
data. To do this, we are required to satisfy for j =1, . . . ,N

1We note here that there is some debate concerning the validity of this fiction and statisti-
cians are sometimes reluctant to interpret predictors and error measures derived from it as more
than practically useful figures, suggesting that no pretense should be made about the rigorousness
of their mathematical foundation. The idea is nonetheless a powerful one, as it suggests plausi-
ble ways of constructing useful models of deterministic outputs (Trosset and Torczon (1997)) and
experience shows that the predictions obtained with them are adequate for practical purposes.
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f̂ (x(j))=
N∑

i=1

wiφ(‖x(j)−x(i)‖)=y(j). (5)

We note here that some authors also add a set of polynomial terms to the
expression of the predictor in order to guarantee that the system of equa-
tions will not be singular (see, e.g., Jones (2001)). In our experience this
rarely appears to be necessary, so, for the sake of simplicity, we have omit-
ted it here.

Defining the coefficient vector w = [w1,w2, . . . ,wN ]T and the matrix
�i,j =φ(‖x(i)−x(j)‖), where i=1, . . . ,N and j=1, . . . ,N , Equation (5) can
be written as �w = yT . Then, provided the inverse of � exists, the coeffi-
cients can be determined by computing w =�−1yT and a prediction ŷ can
be made in any point x(N+1)∈D

ŷ(N+1)=φw =φ�−1yT , (6)

where

φ = [φ (‖x(N+1)−x(1)‖) , φ (‖x(N+1)−x(2)‖) , . . . ,
φ
(‖x(N+1)−x(N)‖)] . (7)

Many different basis functions φ(·) could be considered. Throughout this
work we have used exponentially decaying Gaussian basis functions

φ(r)= exp
(−r2

2σ 2

)
(8)

as they facilitate the derivation of an expected improvement measure. The
choice of the hyperparameter σ , which governs the regions of influence of
each kernel, is important and can affect prediction accuracy. In the work
presented here we use a leave-one-out cross validation procedure, searching
for the optimum σ over the domain [10−2,101]. This means that for each
value of σ we build N RBF models leaving out one of the training points
in each case (as though we only had N−1 points), we compute the differ-
ence between the true objective value of the currently left out point and the
objective predicted by the partial model (which uses the remaining N − 1
points) at the same point. The final model is constructed using the σ that
minimizes the sum of the squares of these residuals. We consider 20 values
of σ logarithmically spread over the range indicated above. More thorough
searches (i.e., a full optimization of the hyperparameter σ ) could be consid-
ered, but this would increase the computational cost of the training and in
the authors’ experience the gain in model accuracy thus achieved is not sig-
nificant. We also note here that the optimum σ is related to the distances
between the kernels – the range [10−2,101] appears to be suitable for the
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case when the problem domain is normalized to D= [0,1]k (as in all the
experiments described here).

Clearly, more accurate models could be considered; for example, we
could allow the selection of a different σ for each independent variable (as
is often done, for example, in kriging). However, the computational cost of
model training then becomes an issue.

We mentioned in the introduction that the global end of the search strat-
egy spectrum is to sample in areas of high estimated approximation error,
i.e., in our case, to choose the design that maximizes the estimated error of
the RBF predictor. In order to calculate this we make use of the assump-
tion discussed earlier, namely that each deterministic response y(x) is in
fact the realisation of some stochastic process Y (x) (taken here to be a
Gaussian random variable). Using the (Gaussian) distributions of the N

responses y = [y(1), y(2), . . . , y(N)] collected so far, it can be shown that the
mean and the variance of the assumed stochastic process at x(N+1) are

ŷ(N+1)=φ�−1yT , (9)

σ 2
ŷ(N+1) =1−φ�−1φT , (10)

respectively (for a detailed demonstration see, e.g., Gibbs (1997)). As
expected, the mean of the imaginary Gaussian distribution that we drew
ŷ(N+1) from (Equation (9)) is, in fact, the RBF predictor obtained
earlier (6). We will use the variance of this Gaussian distribution (Equation
(10)) as a measure of the likely prediction error at untested sites.

From a global optimization perspective, searching the prediction error
amounts to exploration of the search space, whereas searching the predictor
itself is equivalent to exploiting currently known promising basins of attrac-
tion. Clearly, we need an infill-point selection criterion that balances these
two approaches.

As we have seen, the stochastic process Y (x) models our uncertainty
about the response y(x) in the point x. Denoting the best objective value
from the sample evaluated so far by ymin = min

{
y(1), y(2), . . . , y(N)

}
, a fur-

ther quantity can be defined: the improvement

I (x)=max {ymin −Y (x),0} . (11)

(Jones et al., 1998). This is, of course, also a random variable – it mod-
els our uncertainty about the amount by which y(x), the objective function
value in the next evaluated sample point, will improve on the current best
objective.

Given a prediction ŷ and an error estimate s = σŷ(N+1) (in a point x, as
per Equations (9) and (10)), using Gaussian kernels, the expectation of
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the improvement (or, as it is often termed in the literature, the expected
improvement) can be calculated (see, e.g., Schonlau, 1997) as

E(I)=EIF(x)=
{
(ymin − ŷ)�

(
ymin−ŷ
s

)
+ sψ

(
ymin−ŷ
s

)
if s >0,

0 if s=0,
(12)

where �(·) is the standard normal distribution function and ψ(·) is the
standard normal density function.

The first term of Equation (12) is the predicted difference between the
current minimum and the prediction ŷ in x, penalized by the probability of
improvement. Hence it is large where ŷ is small (or it is likely to be smaller
then ymin). The second term is large when the error s is large, i.e., when
there is much uncertainty about whether y will be better than ymin. Thus,
as Schonlau (1997) points out, the expected improvement will tend to be
large at a point with predicted value smaller than ymin and/or there is much
uncertainty associated with the prediction. Therefore, expected improve-
ment can be considered as a balance between seeking promising areas of
the design space (according to our approximation) and the uncertainty in
the model. The global search strategy based on it (i.e., evaluation of the
initial DoE set, followed by updates at maxima of the expected improve-
ment surface) has the advantage that it is much less likely to stall than a
search over the approximation only (although there are certain pathologi-
cal cases when it does, see, e.g., Jones (2001)). The disadvantage is that it
usually takes longer to converge, which could be a drawback if the initial
model did turn out to be an accurate one.

Since we are interested in controlling the precise balance of exploitation
(optimization of the predictor) and exploration (seeking areas of maximum
uncertainty), it makes sense to introduce a weighted infill sample criterion,
which is a linear combination of the two terms of the expected improve-
ment measure

WEIF(x)=
{
w(ymin − ŷ)�

(
ymin−ŷ
s

)
+ (1−w)sψ

(
ymin−ŷ
s

)
if s >0,

0 if s=0,
(13)

where the weighting factor w ∈ [0,1]. Clearly, w = 0 will yield the global
extreme of the search scope range, while selecting the next infill sample
point using w = 1 will concentrate the search on the current best basin
of attraction. Thus, the larger the values of w, the more restricted (local)
the scope of the search will be and the weighting offers the possibility
of fully covering the continuum between exploration and exploitation. A
notable value of w is 0.5, which will, of course, yield 0.5EIF(x). We now
examine the impact of varying the weighting w on the Weighted Expected
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Improvement Function (WEIF) landscape through a simple one-variable
toy problem.

3. A demonstrative example

Let us consider the one-variable function shown at the top of Figure 1. We
assume that it has been sampled in the six points indicated on the plot as
circles and an RBF approximation has been constructed. The predictor is
also shown in the top section of the figure. The dashed lines either side of
the predictor represent the predictor plus and minus one standard error. On
the left-hand side of the plot this is very small, as the density of the sam-
ple is much larger there – the error is only visible in the fairly large gap
between the fifth and sixth points.

The uneven distribution of these points may seem slightly unrealistic in a
DoE context. Nevertheless, such situations regularly occur in higher dimen-
sions and/or after a few infill points have been added to the database.

The section of the figure placed below this plot shows the weighted
expected improvement with weighting w=0. Based on the above discussion,

Figure 1. Demonstrative example showing the impact of the choice of w on the weighted
expected improvement for a simple one-variable function.
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we would expect the WEIF measure to give the search a fully global bias.
This is indeed the case, as the sole maximum of the criterion is in the
sparsely sampled region, where the uncertainty about whether the function
value is better than the current best point is high. Note that the “good-
ness” of the prediction, i.e., the value of the predictor, is not influencing the
optimization based on the WEIF with w=0: the weighted criterion guides
us to near the middle of the unsampled region, in spite of the predicted
objective being rather poor here.

As we increase w, i.e., we give the search a more local flavor, another
peak starts to emerge in WEIF on the left-hand side where the predictor
indicates good function values (although the uncertainty is very low here).
When we reach w = 0.35 (see the third section of Figure 1) the impor-
tance of exploration and exploitation becomes approximately equal (the
two peaks are of equal height).

The bottom section of Figure 1 shows the WEIF landscape for w= 1.
Clearly, maximizing this surface will yield a single optimum, which will be
in the lowest predicted objective function value point. Wherever the predic-
tion is worse than the current best point, the WEIF will be negative (due
to the ymin − ŷ factor in the first term of Equation (13)).

A final aspect of our generic two-stage optimization strategy, which we
need to discuss before looking at more complex examples, is the way in
which we handle constraints imposed on the objective function – we do
this in the following section.

4. Dealing with constrained objectives

Constrained expensive optimization problems come in two flavors. The
objective is either constrained by a function that can be evaluated at neg-
ligible cost (this usually means that it can be calculated using some closed
form expression) and thus it is known exactly throughout its domain (we
present an engineering design example for this in Section 5) or by another
computationally expensive function, in which case this, just like the objec-
tive, needs to be approximated.

The simplest constrained optimization strategy is to evaluate the con-
straint at the same points where the objective is evaluated and modify the
expected improvement criterion to take into account the constraint values.
One method for modifying the EI criterion, termed expected violation, is
discussed by Audet et al. (2000). Another approach, used by Jones et al.
(1998), involves multiplying the expected improvement criterion by an esti-
mate of the probability that the sampled point will be feasible. Here we
modify the EI criterion in a manner that, though very straightforward,
is sufficiently effective to allow initial explorations on how weighted EI
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might perform on constrained problems.2 We simply set the criterion to
zero wherever the approximate or exact constraints are violated

WEIF (x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(ymin − ŷ)�
(
ymin−ŷ
s

)
+ (1−w)sψ

(
ymin−ŷ
s

)

if s >0 and the (approximate or exact) constraints are
satisfied,

0
if s=0 or if the (approximate or exact) constraints are
violated.

(14)

Here ymin should be taken as the minimum feasible response (assuming, of
course, that the initial sample contains at least one feasible point3), where
feasibility is assessed on the basis of the exactly known or the approxi-
mate constraint value in each sampled point, depending on the cost of the
constraint.

We are now ready to proceed to examine the effects of local/global bias of
the WEIF, in conjunction with that of starting from different initial samples,
on the performance of a two-stage optimization algorithm. We use artificial
test functions first, followed by two “real-life” engineering applications.

5. Empirical results

5.1. artificial test functions

For the purposes of this study we have selected three test functions. In order
of increasing complexity they are the Sphere, a modified version of Rosen-
brock’s “banana” function and the highly multimodal Ackley function (Ack-
ley, 1987). Figures 2–4 represent these functions in two dimensions (please
refer to the captions for details on their definition) – we have looked at the
performance of the WEIF-based optimizer on the 5-variable versions and in
one case (Ackley’s) on the 10-dimensional landscape as well.

The optimization algorithm we have used to perform this empirical study
is shown in Figure 5. We start by generating an initial database of points
and we evaluate their objective function values. A random Latin Hypercube

2Difficulties could arise here when the optimum is on a constraint boundary. There is a rich
literature on how to tackle this problem within various optimization algorithms – the interested
reader may consult, for example, the seminal work of Fiacco and McCormick (1968).

3If the initial sample does not contain a feasible point, one can start by applying the algo-
rithm to the sum of squared constraint violations instead of to the objective function. Once a
feasible point has been found, one can apply the algorithm to minimize the objective. Note that
the initial sample would now be augmented to include the points evaluated while searching for a
feasible point.
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Figure 2. Sphere function.

fS =
N∑
i=1
x2
i , xi ∈ [0,1].

experimental design is used to build these initial designs. In order to alle-
viate the effects of any bias due to some of these initial points falling, by
sheer luck, close to the global optima of the studied functions, each result
is averaged over 30 runs (except where otherwise stated).

Next, an RBF model (Equation (4)) is fitted using Gaussian basis func-
tions (Equation (8)) and the corresponding WEIF surface is optimized using
a BFGS search with 1000 random restarts (like the expected improvement,
the weighted expected improvement surface can be highly multimodal and
thus difficult to optimize reliably – hence the large number of restarts). The
objective function is evaluated at the optimum point and it is added to the
database. A new RBF model is fitted and the process is repeated, usually
until we run out of time. There are two exceptions to this stopping criterion,
which can halt the process earlier. First, in the case of test functions with
known optima, if the global optimum is reached the process stops. The sec-
ond supplementary stopping criterion is employed when the WEIF weighting
is very high, so that the search is becoming so localized that successive points
are very close together and there is no point in continuing.
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Figure 3. Modified Rosenbrock function, normalized to [0,1] (a k-dimensional sinewave has been
added to the Rosenbrock function to increase its modality).

fMR =
k−1∑
i=1

100(xi+1 −x2
i )

2 + (1−xi)2 +
k∑
i=1

75 sin(5(1−xi)), xi ∈ [−2.048,2.048].

For the visualization of the results we have opted for a greyscale snap-
shot map format. The density of a particular region of the plot represents
the (averaged) objective function value reached by an optimizer started
from an initial Latin Hypercube sample of the size shown on the vertical
axis, using the WEIF weighting indicated by the horizontal axis. Looking
back at the discussion of the relationship between the scope of the search
and the WEIF weighting, the closer we are to the left edge of the plot
the more global the search is – conversely, moving to the right gradually
reduces the scope of the WEIF criterion.

Let us use Figure 6 to clarify how the plots are structured (we will ana-
lyze its actual significance later). As an example, the density of the point
marked by the cross (we chose this point arbitrarily) indicates the aver-
age objective value obtained when optimizing the function under scrutiny,
after the evaluation of 11 points in total (as indicated by the title of the
plot), out of which five were in the initial Latin Hypercube DoE set (this
value can be read off the vertical axis) and the remaining six have been
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Figure 4. Ackley’s path function, normalized to [0,1].

fACK =−a exp

(
−b
√

1
n

k∑
i=1
x2
i

)
− exp

(
1
n

k∑
i=1

cos(cxi )
)

+a+ exp(1), xi ∈ [−2.048,2.048].

selected using the WEIF criterion with a weighting of 0.4 (the abscissa of
the point). This, referring again to the analysis in Section 2, relates to an
optimization with a slightly broader scope (more global) than that of the
conventional expected improvement criterion (w=0.5).

Due to the high computational expense of generating these plots, in most
cases it was impractical to run the tests for every possible initial DoE size
and for a very large number of different weightings – the density maps
are therefore regressors through the actual data points. For each initial
DoE size the optimizer has been run with 11 different weightings, covering
the range between 0 and 1 with increments of 0.1. Each set of runs was
stopped after some of the runs achieved an optimal (or very close to the
optimum) solution – in the case of Figure 6, for example, after 11 evalua-
tions of the objective function.

Generally the optimizer “weeds out” the very poor regions of the
search space fairly rapidly. In other words, during the initial stages of
the search very substantial progress is made towards the optimum, leaving
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Figure 5. Optimization algorithm based on the WEIF infill sample selection criterion.

comparatively little room for variation in the crucial “fine-tuning” phase
(with the exception of runs with very bad parameter choices, which make
very slow progress throughout the search process). Therefore, in order to
distinguish between the various areas belonging to “relatively good” initial
DoE sizes and weightings, the density map is based on a logarithmic scale
(as shown by the density bar adjacent to each figure).

Let us now examine Figures 6–9 in more detail, first from the perspec-
tive of the WEIF weighting. The Sphere function is the easiest of our
testset. As Figure 6 illustrates, for a fairly wide range of weightings and
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Figure 6. Log-scale colourmap of objective function values reached by the optimizer after 11
evaluations of the 5-variable Sphere function, using various WEIF weightings (horizontal axis)
and initial samples of various sizes (vertical axis). The darker areas correspond to better objec-
tive values.

initial DoE sizes the problem is solved after 11 evaluations – as indicated
by the large black area in the lower right-hand corner of the plot. As
expected, a fairly localized search (with weightings ranging from 0.7 to 1)
gives the best results.

A different landscape, the considerably multimodal Modified Rosenbrock
function, yields a dramatically different plot (see Figure 7). On this occa-
sion the black area emerging after 35 evaluations of the objective func-
tion is centered around a weighting of 0.3 for small initial sample sizes and
leans slightly towards w=0.4 as we move up into the zone of 15–20 point
initial DoEs.

The dark region indicating good performance is even further to the left
on the plot showing the objective values after 50 evaluations of the 5-var-
iable version of the highly multimodal Ackley function (Figure 8). Clearly,
the emphasis needs to shift towards exploration, when the number of
potentially misleading local optima is as high as in this case. The contrast
between the center of the plot and the dark area on the left (weightings
ranging from 0.2 to 0.4) shows that using the normal expected improve-
ment criterion would lead to relatively poor performance here. Further
increasing the number of local optima can push the optimum weighting
all the way down to zero. Evidence of this can be found on Figure 9,
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Figure 7. Log-scale colourmap of objective function values reached by the optimizer after 35
evaluations of the 5-variable Modified Rosenbrock function, using various WEIF weightings
(horizontal axis) and initial samples of various sizes (vertical axis). The darker areas correspond
to better objective values.

a snapshot of objective values after 60 evaluations of the same function
(Ackley), this time in 10 dimensions.

We note here that this last plot is only averaged over 10 runs, due to its
high computational expense. The optimizer was run for 8 different initial
DoE sizes (10, . . . ,45), in each case for 11 different weightings (0, . . . ,1,
increments of 0.1). With an initial DoE size of 10 the RBF model needs
to be retrained and rebuilt 50 times (to reach the total objective function
evaluation count of 60), starting from 15 points requires 45 constructions
of the model, etc. This amounts to 50 + 45 + · · · + 15 = 260 runs of the
training procedure for each WEIF weighting factor, that is 260×11=2860
across the entire range. Averaging over 10 runs thus gives a total figure of
28600 models that need to be trained. With one such procedure taking, on
average, around 60 s on a PIII processor for a 10-variable problem, the
required CPU time works out to 429 h for this plot alone.

The other aspect of the performance of the algorithm that we have
looked at is the optimum size of the initial Latin Hypercube sample.
A common conclusion that can be gleaned from all of the plots we have
examined is that the algorithm becomes inefficient if the size of the ini-
tial sample exceeds about 60% of the total computational budget. This
confirms our intuition, as formulated in the introductory section: if the
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Figure 8. Log-scale colourmap of objective function values reached by the optimizer after 50
evaluations of the 5-variable Ackley function, using various WEIF weightings (horizontal axis)
and initial samples of various sizes (vertical axis). The darker areas correspond to better objec-
tive values.

size of the initial sample is too large we are likely to waste points by
placing them simply in a space-filling manner, instead of using information
gained from the objective values of previous points (via some approxima-
tion model-based criterion). The opposite problem becomes evident when
looking at either of the two Ackley plots (Figures 8 and 9). A very small
initial DoE sample (10–15 points) often renders any approximation-based
criterion almost entirely meaningless – as the contrast between this region
and the much darker one above it (20–30 initial points) indicates, more can
be gained by at least ensuring that these points fill the space uniformly,
without using the objective values of the other points to decide on their
location.

This phenomenon, however, only manifests itself on landscapes of very
high complexity. In the majority of the cases studied here, although the
small DoEs still do not contain sufficient information to allow the con-
struction of an accurate model, the prediction based on them can offer
some guidance on the choice of points, at least as valuable as choos-
ing the points on the space-filling criterion. In summary it can be said
that, based on this (admittedly limited) set of test functions, a safe choice
for an initial sample size is around 35% of the available computational
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Figure 9. Log-scale colourmap of objective function values reached by the optimizer after 60
evaluations of the 10-variable Ackley function, using various WEIF weightings (horizontal axis)
and initial samples of various sizes (vertical axis). The darker areas correspond to better objec-
tive values.

budget (one obvious exception to this rule is where such a choice would
lead to a number of calculations that did not efficiently fill the available
computing facilities – in such cases using more points would probably be
more sensible).

Looking at the weighting factor in conjunction with the initial sample size,
we note that the decision on their values can be made, in general, indepen-
dently. With few exceptions the boundaries of the dark isles on the plots are
roughly horizontal or vertical; thus for practical purposes we do not need
to worry about correlations between the two factors that influence the runs.
Confronted with a new practical application, it is therefore our recommen-
dation that about 35% of the total computational budget be used on the
initial Latin Hypercube sample, as this is within the black regions of all the
plots considered here. This, however, only appears to be necessary for very
deceptive, highly multimodal problems – for most functions it is safe (and
indeed, sometimes marginally better from a performance point of view) to
start from a very small DoE. We also note here that although random Latin
Hypercubes were used throughout the experiments described above, in order
to reduce the effect of chance on the results, in a real one-off application
where the goal is to obtain the best possible optimum, one should use instead



ON THE DESIGN OF OPTIMIZATION STRATEGIES 51

a Latin Hypercube design optimized on some space-filling criterion (e.g., a
maximum–minimum distance criterion). The choice of which weighting to
use for the selection of the remaining 65% of the points ultimately comes
down to the judgment and experience of the analyst. Relatively few real-life
problems generate landscapes as highly multimodal as the Ackley function.
Nevertheless, if this appears to be the case (based on previous experience on
similar problems), one is well advised to keep the scope of the search fairly
global (w∈ [0,0.3]). For problems where one can be reasonably confident of
the accuracy of the initial prediction, values in the range [0.2,0.5] are recom-
mended, depending on the modality of the function. Finally, w=0.5 should
only be exceeded when one is confident that the landscape is of low modality.
Many real-life engineering problems exhibit simple, unimodal behavior – in
these cases running the WEIF-based optimizer with a weighting of around
0.9 can be expected to give good results. In the following section we discuss
an application of this nature.

5.2. a “real-life” unimodal problem: geometric optimization
of a spoked structure

In this case study we consider the optimization of the spoked structure
shown in Figure 10 (left). This model is made up entirely of beam ele-
ments whose thickness can be altered in a variety of ways. The part of the
structure being optimized is shown on the right-hand side of the figure. Six
design parameters define the geometry, five of which describe the ring cross
section while the sixth describes the spoke sections. The rest of the model
simply enforces suitable boundary conditions. Our industrial collaborators
provided realistic loadings to place on the structure.

The goal here is to minimize the maximum von Mises stress (com-
puted using the ProMecanicaTM package) within the structure such that the

Figure 10. Full FE model (left) and part of structure to be optimized (right).
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Figure 11. Two-dimensional section through the objective function of the structural testcase.
The feasible region is delimited by the linear mass constraint.

weight does not exceed a predefined value. Calculating the stress involves
solving the finite element problem at a cost of about 100 s of CPU time, the
weight is simply the result of evaluating an exact linear model (at negligible
cost) and thus can be calculated for each sampled point without incurring
significant computational overheads. The WEIF updates are performed in
the manner described in Section 4.

To check our conjecture that this problem is likely to generate a sim-
ple, unimodal objective we have computed a two-variable slice through the
six-dimensional landscape – this is shown in Figure 11. The contour plot
confirms the conjecture, as it shows a single minimum on the constraint
boundary. Of course, in general we do not have the luxury of generating
such plots (if we had we would not need an optimizer) – here we needed
this insight to underpin our subsequent conclusions with respect to the
choice of the WEIF weighting.

Figure 12 shows the optimizer performance map – a snapshot of average
best objective function (stress) values after 40 evaluations of the stress and
weight functions. The dark region is on the right-hand edge of the plot,
indicating the need for a very localized search (w> 0.8). With regards to
our previous conclusion about the choice of the initial sample size, we note
that 35% of the total budget (14 points) is again inside the high optimizer
efficiency region – thus it is a safe choice on this problem as well.
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Figure 12. Log-scale colormap of objective function values reached by the optimizer after 40
evaluations of the stress function (spoke structure).

5.3. a case of higher modality: vibration optimization
of a two-dimensional structure

Our final study concerns optimization of the frequency response of a two-
dimensional structure of the sort that may be found in girder bridges, tower
cranes, satellite booms, etc. (Renton, 1999). It consists of 40 individual
Euler–Bernoulli beams connected at 20 joints. Each of the 40 beams has
the same properties per unit length.

Initially the boom was designed and analyzed for a regular geometry,
where each beam was either 1 m or 1.414 m in length, as shown in the
top section of Figure 13. The joints at points (0,0) and (0,1) are fixed,
i.e., they are fully restrained in all degrees of freedom, all other joints are
free to move. The structure is excited by a point transverse force applied
halfway between points (0,0) and (1,0) (as indicated by the arrow on Fig-
ure 13). The vibrational energy level was found for the right-hand end ver-
tical beam using matrix receptance methods based on the Green functions
of the individual beam elements, which are set up to calculate the forces
and velocities at the joints (Keane, 1995). This approach allows for a quick
calculation of the energy flows around the structure. The results of the
analysis have been validated experimentally (Keane and Bright, 1996).

The objective was the minimization of the frequency averaged response
of the beam in the range 150–250 Hz.

For the purposes of this study the x and y locations of the two mid-
span points were allowed to move during the optimization within squares
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having sides of 0.5 m, centered on the initial points (see Figure 13), thus
generating a four-dimensional optimization problem. The rest of the struc-
ture remained unchanged.

Again, to make the correlation between the optimum expected improve-
ment weighting and the complexity of the landscape clearer, we have pro-
duced a two-variable slice through the design space. Figure 14 shows a
contour plot of the energy level function, as measured on the right-hand
end vertical beam.

As expected, this low modality (but no longer unimodal) problem dic-
tates a weighting higher than 0.5, but lower than 0.8 (see Figure 15). In
fact the dark region of the corresponding weighting-DoE size map is cen-
tered around w=0.7.

As far as the optimum population size is concerned, 35% (10 points) is
still a safe choice, although in this case the performance is just as good if
one starts with a very small initial DoE.

6. A variable bias update strategy

We have seen in Section 5 how a rough knowledge of the complexity of
the objective function can prove to be a valuable aid in choosing the right
global-local bias (i.e., the weighting w) for the global optimization process.
However, it is not uncommon in engineering design practice that very lit-
tle is known about the nature of the objective, in which case there is no

Figure 13. The two-dimensional truss in its “baseline” form (top) and in optimized form (bot-
tom). The squares around the mid-span points indicate the ranges in which the locations of the
joints were allowed to move during the optimization process.
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Figure 14. Two-dimensional section through the vibrational energy level function of the truss
testcase. (x1 is the x-coordinate of joint, x2 is the y-coordinate of the same joint).

obvious alternative means of selecting the best bias without incurring sig-
nificant computational expense in doing so.

For such situations Gutmann (2001) suggests cycling through the avail-
able range of global-local balances as the search progresses. He picks an
infill point using a highly global setting of his criterion, the following
five points to be sampled being selected by gradually shifting the balance
towards exploitation. This six-step pattern is then repeated for the rest of
the search. Since the same bias variation is used for all functions, the need
for choosing the bias-related runtime parameter(s) is eliminated.

Here, we suggest implementing this heuristic by cycling through the
pattern w = {0.1,0.3,0.5,0.7,0.9}. Thus, like Gutmann, we start from an
exploratory weighting and we move towards exploitation – this pulsating
search scope pattern is then repeated until we run out of time or some
other stopping criterion is met.

In order to gauge the computational efficiency of this algorithm, we ran
it on the Dixon–Szegö test problem set (Dixon and Szegö, 1978). The main
reason for choosing this as a basis for benchmarking was the availabil-
ity of an abundance of historical search performance data that we could



56 ANDRÁS SÓBESTER ET AL.

Figure 15. Log-scale colormap of objective values reached by the optimizer after 30 evaluations
of the vibrational energy level function (two-dimensional truss).

Table I. Main features of the Dixon–Szegö test problems

Test function Dimensionality Local minima Global minima

Branin 2 3 3
Goldstein-Price 2 4 1
Hartman 3 3 4 1
Hartman 6 6 4 1
Shekel 5 4 5 1
Shekel 7 4 7 1
Shekel 10 4 10 1

compare our performance figures with. Amongst others, Jones et al. (1998),
Björkman and Holström (1999) and Gutmann (2001) run their techniques
on most of the Dixon–Szegö functions – we use the same test problems,
the most important features of which are summarized in Table I.

Table II contains a comparison between the convergence figures of our
cyclic bias variation algorithm and those of the RBF-based cyclic search
of Gutmann (2001), the DIRECT algorithm (results from Björkman and
Holström (1999)) and the ubiquitous EGO technique introduced by Jones
et al. (1998). Specifically, the numbers of objective function evaluations are
shown for each function, which are required by the optimizers to achieve
an actual relative error of 1% or better (see the caption of the table for the
exact definition). Each result is averaged over 10 runs, where the runs have
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Table II. Comparative optimizer performance table showing the number of evaluations required by
the various optimizers to get to within 1% of the global optima of the Dixon-Szegö test functions
(the error of convergence is defined as E= 100(fmin −fglobal)/|fglobal|, where fmin is the current best
objective function value and fglobal is the global optimum of the function).

Evaluation count when E<1%

Test function WEIF cyclic Gutmann DIRECT EGO

Branin 34 44 63 28
Goldstein-Price 32 63 101 32
Hartman 3 28 25 83 35
Hartman 6 33 112 213 121

Best of 10 runs
Shekel 5 43 76 103 –
Shekel 7 84 76 97 –
Shekel 10 63 51 97 –

The WEIF cyclic bias variation algorithm results are averages over 10 runs, except those for the
Shekel functions, which are referring to the best of 10runs. The runs were started from an initial set
of 10 training points, arrangedin a latin hypercube experimental design.

been started from different, randomly generated latin hypercube experimen-
tal designs. As before, the purpose of this experimental setup was to eliminate
the effect of chance, i.e., the effect of distorted performance figures caused
by one or more points of the initial design landing near the global basin.

As the table shows, the WEIF-based cyclic bias variation algorithm
works well on most of the test functions that we have experimented with
here. The Shekel functions might be considered to be an exception to
this – here the objective values after 150 evaluations for versions 5, 7 and
10 were still short of the global optima (by 13.88%, 20.09% and 11.26%,
respectively). In each case, however, there was at least one run that did
reach the 1% threshold within this budget – the performance figures for
the best of these are shown in the table. This indicates that, like many
other approximation-based algorithms, a search based on the WEIF update
scheme may be inefficient on “needle in a haystack” type problems (such as
Shekel’s “foxholes”) – thankfully, such problems are relatively rare in engi-
neering design optimization. We also note here that the comparative table
presented here should be considered in the light of the fact that the results
for Gutmann’s algorithm and EGO do not take into account the variability
of the performance resulting from the variability in the choice of the initial
sampled points (this can make a particularly large difference when the rel-
ative area of the basins of attraction is very small, as in the case of the
Shekel function family).

7. Conclusions and future work

The aim of this work has been to provide guidance on setting up optimi-
zation runs based on RBF approximation models. Central to this is the
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introduction of a criterion that allows easy control of the scope of the
search when selecting infill sample points. We have looked at the effects of
biasing the infill selection via this criterion, either towards global explora-
tion or towards exploitation of promising areas, through a set of empirical
tests.

The two aspects we were most interested in were the selection of an
appropriate weighting factor (which controls the scope of the criterion and
thus the scope of the search) and the selection of the size of the initial
DoE set of sampled designs. One of the most important conclusions of
these experiments was the relatively high importance of these factors from
the point of view of search efficiency, as highlighted by the sharp contrasts
seen on some of the optimizer performance maps. However, these maps
also indicate that there is some safety margin in choosing the two param-
eters.

Naturally, there is always room for further refinement and verification
of these guidelines. The set of objective functions examined here is fairly
limited and the results relevant to the choice of the initial sample size
are based on a single computational budget in each case. Other types
of approximation models could also be considered, including gradient-
enhanced global approximations (where the objective function gradients
can be obtained cheaply). Although the computational expense of build-
ing such maps can be relatively high, they are worth the effort if one is
often confronted with optimization problems belonging to the same class
and therefore such fine-tuning of the optimizer can be justified.

For those cases where no information is available on the complexity
of the objective function, we have assessed the performance of a variable
global–local bias scheme. The results obtained on a set of test functions
(compared with other approximation-based techniques) are encouraging
and indicate that the weighted expected improvement criterion can play
a significant role even when we have no prior knowledge of the problem
under scrutiny. We note here that future work in this area could include an
extension of the variable bias scheme for parallel architectures, where each
set of parallel updates could contain points selected with different values
of the weighting (covering a range of balances from global to local).
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Sóbester, A., Leary, S.J. and Keane, A.J. (2004), A parallel updating scheme for approxi-

mating and optimizing high fidelity computer simulations, Structural and Multidisciplinary
Optimization 27, 371–383.

Sobol, I.M. (1979), On the systematic search in a hypercube, SIAM Journal of Numerical
Analysis 16, 790–793.

Trosset, M.W. and Torczon V. (1997), Numerical optimization using computer experiments,
technical report TR-97-38, ICASE, NASA Langley Research Center, Hampton, Virginia.

Watson, A.G. and Barnes, R.J. (1995), Infill sampling criteria to locate extremes, Mathemat-

ical Geology 27(5), 589–608.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


